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Plasma Confinement

A plasma is a “hot ionized gas” whose motions both generate electromagnetic

fields and are influenced by them.

No material walls can contain the plasma at millions of degrees Kelvin. Either

the plasma will damage the wall, or the wall will cool the plasma.

Magnetic fusion devides use strong

magnetic bottles, in toroidal configu-

rations, to confine the plasma.
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Target Applications

Magnetic Reconnection: [Brin et al., J. Geophys. Res., 2001]

• Replaces hot plasma core with cool plasma

• Interested in investigating macroscopic stability

• Resolution, simulation time scale as S−1/2, S1/2

• ITER estimates require S ≈ 109

Pellet Injection Fueling: [Samtaney et al., Comp. Phys. Comm., 2004]

• Shoot hydrogen pellets into plasma at high velocity

• Interested in location of mass deposition

• Pellet motion O(104) slower than fastest waves

• Pellet size O(104) smaller than reactor

Both require large-scale, long-time simulations,

highly anisotropic heat conduction.
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Single-Fluid Resistive MHD

Combining conservation laws for a single plasma fluid, Maxwell’s equations and

a pellet ablation model, we have the system of equations over the domain Ω:

∂tρ +∇ · (ρv) = Sρ

∂t(ρv) +∇ ·
“
ρvvT −BBT +

`
p + 1

2
B ·B

´
I
”

= ∇ · τ

∂te +∇ ·
`
(e + p + 1

2
B ·B)v −B(B · v)

´
= Se

+∇ · (τv) +∇ ·
“
κ∇T + η

“
1
2
∇(B ·B)−B(∇B)T

””
∂tB +∇× (v ×B) = ∇× (η (∇×B))

∂t rp = Srp

where e = p
γ−1

+ ρv·v
2

+ B·B
2

, T = p
ρ rgas

, and τ = µ
`
∇v + (∇v)T

´
− 2

3
µ(∇ · v)I

• ρ, e ∈ H2(Ω; IR+); v,B ∈ H2(Ω; IR3); rp ∈ IR+

• Reconnection: Ω ⊂ IR2; Sρ = Se = rp = 0

• Pellet injection: Ω ⊂ IR3
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Single-Fluid Resistive MHD
We solve these in conservation form for U = (ρ, ρv, B, e, rp)T :

∂tU +∇ · Fh(U)−∇ · Fv(U) = S,

where

Fh(U) =

0BBBBBBB@

ρv

ρvvT −BBT + (p + 1
2
B ·B)I

vBT −BvT

(e + p + 1
2
B ·B)v −B(B · v)

0

1CCCCCCCA
, ←− Hyperbolic flux (Ideal MHD)

Fv(U) =

0BBBBBBB@

0

τ

η
`
∇B− (∇B)T

´
τv + κ∇T + η

`
∇( 1

2
B ·B)−B(∇B)T

´
0

1CCCCCCCA
, ←− Parabolic flux

S =
`
Sρ, 0, 0, Se, Srp

´T ←− Pellet ablation sources

UC San Diego, Computational and Applied Math Group 13 July 2006 (6)



Outline

I. MHD Description and Equations

II. Spatio-Temporal Discretization Approach

III. Un-Preconditioned Results

IV. Preconditioning Approach & Results

V. Current Work

UC San Diego, Computational and Applied Math Group 13 July 2006 (7)



Finite Volume Spatial Discretization

• Divergence form of equations:

∂tU = ∇ · F(U) + S(U)

• Divergence Theorem for volume

integral:

∂tUcell =
X

faces f

AfFf · nf + Scell

• Flux computation at cell faces is

the essence of these schemes
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Spatial Discretization Details

Interpolation to cell faces can dramatically affect

• Physicality of results (∇ ·B, shock resolution, etc.)

• Numerical stability

• Solution accuracy and computational cost

Our simulations may use any one of:

1. O(h2) Godunov: Roe and Riemann methods; inherently dissipative; helpful

for capturing shocks; non-commutative (πiπj 6= πjπi)

2. O(h2) or O(h4) Centered: interpolation based on neighbor averages;

non-dissipative; increased dispersion error; πiπj = πjπi

3. O(h2) Tuned Centered: same as (2), but with reduced dispersion error

4. O(h2) Zip Average: similar interpolation properties to (2), possibly

improved stability [Chacon, Knoll; Hirt]
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Implicit BDF Time Stepping

Method of lines approach for spliting time and space dimensions, time

integration based on a high-order (up to O(∆t5)) BDF method:

g(Un) ≡ Un −∆tnβn,0f(Un)−
qnX
i=1

ˆ
αn,iU

n−i + ∆tnβn,if(Un−i)
˜
.

• RHS function f(U) ≡ ∇ · (Fv(U)− Fh(U)) + S(U)

• Time-evolved state Un solves the nonlinear residual equation g(U) = 0

• qn determines the method’s order of accuracy: at qn = {1, 2} the method

is stable for any ∆tn, stability decreases as qn increases.

• αn,i and βn,i are fixed parameters for a given method order qn

• ∆tn, qn adaptively chosen at each time step to balance solution accuracy,

solver convergence, and temporal stability.

[see Gear & Saad, SIAM J. Sci. Stat. Comput., 4, 1983.; Hindmarsh et al., ACM TOMS, 31, 2005.]
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Inexact Newton-Krylov Solver

Iterate toward g(Un) = 0 using a sequence of linearized solutions:

1. Given an explicitly-predicted initial guess, U0 ∈ span{Un−i}qn
i=1

2. For each iterate k, until ‖g(Uk+1)‖ < Ntol:

(a) Approximately solve the linear system J(Uk) δUk = −g(Uk)

(b) Update the approximate solution: Uk+1 = Uk + λ δUk

• ‖ · ‖ is a 2-norm, weighted by relative magnitudes of expected solution

• Jacobian J(U) provides a linear model of g(U) around U:

J(U) ≡ ∂
∂U

g(U) = ∂
∂U

[U− γf(U)] , γ ≡ ∆tnβn,0

• Linear systems solved with GMRES iterative solver; requires only products

J(Uk)V, which are approximated so no matrix need be created/stored

J(Uk)V = [g(Uk + σV)− g(Uk)] /σ + O(σ).
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Properties of this Approach

The BDF-Newton-Krylov approach has a number of attractive properties:

• Newton convergence is independent of refining spatial resolution.

• Retains ∇ ·B ≈ 0 in time for any nonlinear tolerance Ntol

(assuming ∇ ·B0 ≈ 0, & commutative spatial differencing).

• If boundary conditions satisfy
R

∂Ω

`
Fv,i(U)− Fh,i(U)

´
· n ds = 0 for each

conservation species i, we retain strongly conservative discrete solutions,Z
Ω

“
Un

i −Un−1
i

”
dx =

Z
Ω

“
S(Un

i )− S(Un−1
i )

”
dx, for any Ntol.

The challenges lie within the inner Krylov method:

• For nonsingular J(U) ∈ IRn×n, GMRES converges in at most n iterations;

but each iterate requires storage of an additional IRn-vector.

• The convergence rate depends on λ(J(U)), and is fastest for

tightly-clustered eigenvalues; typically degrades as κ(J) increases.
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Un-Preconditioned Reconnection Results
Implicit method produces identical physical results as explicit, captures theoretical scaling properties.
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Explicit and implicit CPU times, time steps, step sizes to reach t = 50.

mesh size Exp. CPU Time Exp Nt Exp ∆t Imp. CPU Time Imp Nt Imp ∆t

64×32 75 s. 1636 3.06e-2 47 s. 1144 4.37e-2

128×64 768 s. 3247 1.54e-2 285 s. 1158 4.32e-2

256×128 8214 s. 6493 7.70e-3 1817 s. 1075 4.65e-2

512×256 80348 s. 12985 3.85e-3 14203 s. 1473 3.39e-2

[see R., Samtaney & Woodward, JCP, 2006.]
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Un-Preconditioned Pellet Injection
Pellet injection/ablation density snapshots; Explicit, Implicit scaled CPU times.
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Explicit and implicit time steps, sizes, CPU times to reach t = 3.

mesh size (procs) Exp. CPU Time Exp Nt Exp ∆t Imp. CPU Time Imp Nt Imp ∆t

323 (1) 4198 s. 2844 1.05e-3 7168 s. 6221 4.82e-4

643 (8) 9136 s. 4886 6.14e-4 16520 s. 6467 4.64e-4

1283 (64) 23136 s. 8995 3.34e-4 28598 s. 8979 3.34e-4

2563 (256) 49507 s. 17619 1.70e-4 40842 s. 9725 3.08e-4

[see R., Samtaney & Woodward, JCP, 2006.]
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Implicit MHD Preconditioner Acceleration

Instead of solving J δU = −g, we solve the related system (JP−1)(P δU) = −g.

• P may be any approximation to J that is efficiently solved.

• P approximations does not affect the accuracy of the nonlinear solution,

only the Krylov convergence properties.

• P does affect the subtler properties of the overall method (e.g. ∇ ·B).

Since MHD stiffness results from fast hyperbolic and diffusive effects, we set

P−1 = P−1
h P−1

d = J(U)−1 +O(∆t2).

• Operator-splitting approach widely used as a stand-alone solver, we use it

to accelerate convergence of our more stable and accurate approach

• Different problems will require one more than another
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Ph: Ideal MHD Preconditioner

Ph treats only the fastest wave effects within the implicit MHD system.

Denoting (·) as the location of linear operator action, ideal MHD has Jacobian

Jh(U) = I + γ [Jx∂x(·) + Jy∂y(·) + Jz∂z(·)]

= I + γ
ˆ
JxL−1

x Lx∂x(·) + JyL−1
y Ly∂y(·) + JzL−1

z Lz∂z(·)
˜

= I + γ
ˆ
JxL−1

x ∂x (Lx(·))− JxL−1
x ∂x(Lx)(·)

+ JyL−1
y ∂y (Ly(·))− JyL−1

y ∂y(Ly)(·)

+ JzL−1
z ∂z (Lz(·))− JzL−1

z ∂z(Lz)(·)
˜

We then form an ADI-based O(γ2) preconditioner as

Ph =
ˆ
I + γJxL−1

x ∂x(Lx(·))
˜ ˆ

I + γJyL−1
y ∂y(Ly(·))

˜ ˆ
I + γJzL−1

z ∂z(Lz(·))
˜

ˆ
I − γ

`
JxL−1

x ∂x (Lx) + JyL−1
y ∂y (Ly) + JzL−1

z ∂z (Lz)
´˜

= Px Py Pz Pcorr.
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Ph: Solving the Px,y,z Systems

• Li is the spatially-local left eigenvector matrix for Ji, i.e. at a given x ∈ Ω,

Li(x)Ji(x) = Λi(x)Li(x), Λi = Diag(λ1, . . . , λ8)

• May be decoupled into 1D wave equations along characteristics:

Li

h
I + γJiL

−1
i ∂i(Li(·))

i
ξ = Liβ ⇔ ζ + γ Λi ∂iζ = χ,

where ζ = Liξ and χ = Liβ.

• We need only solve for the fastest, stiffness-inducing, waves.

• Solved only to low-order (O(∆x2)) since used in preconditioning context

⇒ sequence of tridiagonal system solves.

• Parallelized via a divide-and-conquer approach [Arbenz & Gander, 1994]:

1. Each processor solves local portion of tridiagonal system

2. Small global correction system constructed and solved on all procs.
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Ph: Solving the Pcorr System

For problems with spatially-dependent J(U), a correction solve is required:

Pcorr = I − γ
ˆ
JxL−1

x ∂x (Lx) + JyL−1
y ∂y (Ly) + JzL−1

z ∂z (Lz)
˜

= I − γ
ˆ
L−1

x Λx∂x (Lx) + L−1
y Λy∂y (Ly) + L−1

z Λz∂z (Lz)
˜

• May be constructed from existing eigen-information.

• Since it has no spatial couplings on the unknown, the resulting local block

systems may be solved easily:

– Pre-compute the 8× 8 block-matrices Pcorr at each location.

– Factorize each block Pcorr = LcUc.

– Use these decompositions for fast solves at each Krylov iteration.
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Pd: Diffusive MHD Preconditioner

Pd solves the remaining diffusive effects within the implicit system,

∂tU−∇ · Fv = 0.

We set Pd to be the Jacobian of this operator,

Pd = Jv(U) = I − γ ∂
∂U

(∇ · Fv)

=

2666664
I 0 0 0

0 I − γDρv 0 0

0 0 I − γDB 0

−γLρ −γLρv −γLB I − γDe

3777775
and we then exploit its structure for efficient and accurate solution.
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Pd: Implementation Details

To solve Pd y = b for y = [yρ, yρv, yB, ye]T :

1. Update yρ = bρ

2. Solve (I − γDρv) yρv = bρv for yρv

3. Solve (I − γDB) yB = bB for yB

4. Update b̃e = be + γ (Lρ yρ + Lρv yρv + LB yB)

5. Solve (I − γDe) ye = b̃e for ye.

• Due to their diffusive nature, steps 2, 3 and 5 are solved using a

system-based geometric multigrid solver [HYPRE, SysPFMG].

• Step 4 may be approximated through one finite-difference, instead of

constructing and multiplying by the individual sub-matrices:

Lρ yρ + Lρv yρv + LB yB = 1
σ

[∇ · Fv(U + σW )−∇ · Fv(U)]e + O(σ),

where W = [yρ, yρv, yB, 0]T .
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Ph Results – Ideal MHD Example

• Ideal MHD linear wave propagation test problem to t = 50

• Adaptive high-order BDF Implicit (rtol= 10−7, lintol= 10−2); RK4 Explicit

• 2nd-order spatial Centered-Differences
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Initial Pd Results – Diffusive Example

• Diffusion-dominated resistive MHD pellet-injection test problem (η = 1)

• 10 Fixed steps, Crank-Nicholson Implicit (Ntol= 10−7, steptol= 10−9)

• 2nd-order spatial Centered-Differences

Mesh Prec CFL Frac Newton Krylov

163 N 1 21 30

163 Y 1 20 20

163 N 10 30 128

163 Y 10 40 49

163 N 100 34 680

163 Y 100 45 140

323 N 1 20 20

323 Y 1 20 20

323 N 10 30 153

323 Y 10 40 40

323 N 100 35 785

323 Y 100 51 160
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Current Related Research

• Examine Ph effectiveness on Kelvin-Helmholtz and Tilt-Mode instabilities

• Finish parallel implementation of Pd preconditioner

• Investigate coupled preconditioning approach on pellet-injection and

reconnection test problems

• Investigate O(N) divergence-cleaning approach to ameliorate

preconditioning-induced ∇ ·B errors [Finn & Chacón, Physics of Plasmas, 2005]

• Extend preconditioners to mapped spatial grids, allowing for finite-volume

discretization of toroidal fusion devices (Samtaney, MS78)
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Conclusions

• For MHD systems dominated by hyperbolic stiffness from fast wave

effects, we have developed a preconditioning approach that:

– uses characteristic info. otherwise used only within upwind methods,

– allows preconditioning of any combination of MHD waves,

– is fully parallel, requiring minimal communication per P−1
h solve.

• For MHD systems dominated by diffusive stiffness, we have a

multigrid-based preconditioning approach that:

– uses scalable solver technology for diffusive problems,

– is easily extensible to highly-anisotropic heat conduction (AMG).

• Most problems exhibit both of these effects, so they may be combined in

an operator-split fashion.
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Divergence Cleaning in O(N) Time

After each P−1 solve, we wish to post-process B update to enforce ∇ ·B ≈ 0.

Writing B = ∇×A, with guage Ax = 0, construct A = (Ax, Ay , Az)T via:

Ay(x, y, z) =

Z x

xmin

Bz(ξ, y, z)dξ

Az(x, y, z) =

Z y

ymin

Bx(xmin, η, z)dη −
Z x

xmin

By(ξ, y, z)dξ

1. Compute line integrals to O(∆x2).

2. Interpolate to obtain Ay(x, y, z) and Az(x, y, z) to O(∆x3).

3. Analytically differentiate A to obtain B.

Questions:

• What is the accuracy of the resulting B, it’s affect on convergence?

• Efficient implementation for non-regular meshes?

[see Finn & Chacón, Physics of Plasmas, vol. 12, 2005]
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Parallelism of Directional Solves

For each wave, we have a simple 1D tridiagonal system, spread over all

processors in a spatial row. We parallelize the solve in two phases:

1. (local) Each processor solves its own portion of the system:26666664
T−1
1

T−1
2

. . .

T−1
p

37777775

266666664

T1 C1

D2 T2
. . .

. . .
. . . Cp−1

Dp Tp

377777775

0BBBBBB@
x1

x2

...

xp

1CCCCCCA =

26666664
T−1
1

T−1
2

. . .

T−1
p

37777775

0BBBBBB@
b1

b2
...

bp

1CCCCCCA

⇐⇒

266666664

I E1

F2 I
. . .

. . .
. . . Ep−1

Fp I

377777775

0BBBBBB@
x1

x2

...

xp

1CCCCCCA =

0BBBBBB@
c1

c2
...

cp

1CCCCCCA
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Parallelism of Directional Solves

2. (global) Everythin depends on only a (2p× 2p) subset of unknowns at

processor boundaries. This system is formed globally, and the local

solutions are updated accordingly:266666664

I Ẽ1

F̃2 I
. . .

. . .
. . . Ẽp−1

F̃p I

377777775

0BBBBBB@
x̃1

x̃2

...

x̃p

1CCCCCCA =

0BBBBBB@
c̃1

c̃2
...

c̃p

1CCCCCCA , where

Ẽi = [E1
i , E

ni
i ]T ∈ IR2

F̃i = [F 1
i , F

ni
i ]T ∈ IR2

x̃i = [x1
i , x

ni
i ]T ∈ IR2

c̃i = [c1i , c
ni
i ]T ∈ IR2

Benefits:

• Two sets of global communication: once to set up 1D MPI

sub-communicators, once at each solve for global system.

• Non-iterative, i.e. ’true’ solution is known at end of second phase.

• Easily generalizable to arbitrary boundary conditions.

[see Arbenz & Gander, ETH Zürich, Technical Report, 1994]
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Magnetic Reconnection

Breaking and reconnecting of oppositely-

directed magnetic field lines, converts mag-

netic energy to kinetic and thermal.

• Replaces hot plasma core with cool

plasma, halting fusion processes

• ITER estimates require S ≈ 109

• Spatial resolution scales as S−1/2

• Trecon scales as S1/2

• Simulations therefore require large-

scale, long-time simulations (implicit)

[see Brin et al., GEM magnetic reconnection challenge, J. Geophys. Res., 106, 2001.]
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Pellet Injection – Fueling the Reaction

Refuel the fusion reaction by shooting

frozen hydrogen pellets into the plasma

at high velocity (∼500 m/s)

• Ablation process well understood

• Mass deposition mostly MHD

driven but not well understood

• Pellet motion O(104) slower than

fastest waves, pellet size O(104)

smaller than reactor

• Accurate modeling requires highly

anisotropic heat conduction

[see Kuteev, Nucl. Fusion, 35, 1995; Samtaney et al., Comp. Phys. Comm., 164, 2004]
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